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Heat transfer from surfaces of non-uniform temperature 
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(Received 17 November 1957) 

SUMMARY 
The paper deals with the calculation of steady heat transfer 

from a surface of arbitrary temperature distribution to a laminar 
semi-infinite stream of arbitrary velocity distribution. Lighthill’s 
method is improved by a correction which accounts for the 
departures from linearity of the velocity profile within the thermal 
boundary layer, and which comprehends the influences of Prandtl 
number, pressure gradient, body forces, and non-coincident 
start of velocity and thermal layers. Methods are given for 
evaluating the total heat flux directly, and for integrating the 
differential equations for the growth of the boundary layer 
thickness by means of quadratures. 

1. INTRODUCTION 
Approximate procedures for calculating the heat transfer from a body 

to a laminar stream flowing steadily around it fall into two classes. ‘l’he 
first class contains methods which implicitly assume a fixed relation between 
the thermal and velocity boundary thicknesses. Such is the method of 
Eckert (1942), which has recently been simplified and extended (Smith & 
Spalding 1958 ; Spalding & Smith 1958). These class I procedures are 
valid only for uniform wall temperature. 

Procedures of the second class permit the boundary layer thickness 
ratio to vary ; an ordinary differential equation is set up for each thickness. 
Such are the methods of Squire (1942), Lighthill (1950), and Schuh (1953). 
Class I1 procedures may be used for arbitrary wall-temperature variation. 

The method of Lighthill is asymptotically exact when the thermal 
boundary layer is much thinner than that of the velocity, as occurs, for 
example, when the front part of the body is at the same temperature as the 
stream. Even when the thicknesses are of the same order, the method is 
approximately correct provided that the velocity profile along a normal to 
the surface is nearly linear; this occurs when there is no longitudinal pressure 
gradient. 

Tribus & Klein (1955) have attempted to improve the Lighthill method 
by introducing a correction for pressure gradient due to Tifford (1951). 
It will be shown that this procedure may actually impair the correctness 
of the calculation. The present paper describes an alternative correction 
which reduces the error of the Lighthill method to 2.5%, regardless of 
pressure gradient. 
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In  addition to this improvement the present paper describes a rapid 
method of integrating the differential equations representing the growth 
of the thermal and velocity boundary-layer thicknesses, and also describes 
a procedure giving the total heat transfer rate. 

It is convenient to consider the case of uniform wall temperature first. 
Cases of variable wall temperature are then dealt with by superposition. 
€inally the calculation of the shear force distribution is discussed. 

2. HEAT TRANSFER FROM A SURFACE OF UNIFORM TEMPERATURE 

2.1. The problem 
Figure 1 illustrates an aerofoil. Measured above the free stream 

temperature, the wall temperature is zero up  to a distance 5 from the leading 
edge, but at larger values of x it has the value To. The fluid velocity normal 
to the wall is supposed zero, and the fluid properties are taken as uniform. 
Figure 1 also illustrates the growth of the velocity and thermal boundary 
layers. It is seen that the latter is typically thinner than the former, at least 
where x is not much greater than 5. 
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Figure 1 .  Velocity and thermal boundary layers on an aerofoil. 

It is convenient to discuss the properties of the velocity and temperature 
distributions in terms of boundary-layer thicknesses. The  nomenclature 
used conforms with that of Smith & Spalding (1958) and is summarized 
in table 1, in which u is the x-component of velocity, u1 is the velocity 
outside the boundary layer, T is the fluid temperature, and y is the normal 
distance from the wall. Other notation will be introduced as required. 

O3 uT 
Enthalpy flux thickness 

4 EE J,, u T , d Y  

Conduction thickness 
v o  

I 
Table 1.  
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The problem is to determine the local and total heat fluxes from the 
wall. I t  may be considered solved when A4 has been determined as a 
function of x ;  for the local heat flux 4” can then be evaluated from the 
equation 

where k is the thermal conductivity of the fluid, assumed uniform. If 
the total heat transfer per unit width of aerofoil, i’, is required, 4’’ can be 
integrated over the surface. Alternatively, it may be more convenient to 
calculate A, at the trailing edge (x = 1 )  and then apply the steady-flow 
energy equation in the form 

1 
9‘ = [ 4“ dx = (cpu, Ton,),  

J o  

where c is the fluid specific heat, and p is the fluid density. 

2.2. Dimensional analysis 
As is common in the approximate solution of parabolic partial differential 

equations, a ‘ profile ’ method is used ; that is, the velocity and temperature 
profiles along normals to the wall are assumed to belong to a restricted 
family, in this case those that are found in boundary layers adjacent to 
isothermal wedges in laminar steady flow. For the moment, the shear 
thickness 6, is supposed known as a function of x, and attention is 
concentrated on the conduction thickness A4. 

We assume that the rate of growth of A4 in the x-direction depends 
only on the local values of stream velocity, velocity gradient, kinematic 
viscosity v, thermal diffusivity a, and conduction thickness. Standard 
methods of dimensional analysis can be used to restrict the form of the 
relation between these quantities. In  performing the analysis it is helpful 
to ascribe different dimensions to lengths in the x- and y-directions; for 
then, by using the boundary-layer assumption that viscosity and conductivity 
are responsive only to gradients in the y-direction, the following continuation 
equation can be directly derived: 

where 0 is the Prandtl number v/u. 
The 

function on the right-hand side has yet to be determined. When this has 
been done, standard methods of numerical analysis will yield the dependent 
variable A4 as a function of the independent variable x ;  for u1 and 6, are 
already known as functions of x, while v and u are known constants. 

This is a first-order differential equation, generally non-linear. 
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2.3. The Lighthill method 
Lighthill (1950) has considered the case in which the thermal boundary 

layer is so much thinner than that of velocity that it may be regarded as 
lying wholly within a region of linear velocity profile. T o  proceed as far 
as possible in the direction of Lighthill’s result by means of dimensional 
analysis, it should be noted that in this case u1 and a4 can enter equation (3) 
only in the form of the gradient u1/6,, and that, further, v must have no 
influence. If it is also noted that the application of dimensional analysis 
to the velocity boundary layer gives the continuation equation 

where f is an arbitrary function, then the form of the function in (3)  can 
be deduced. This deduction leads to  the foIlowing compact continuation 
equation : -( 1 -) S4 l l2 z[ d A; (g~’”] = const. 

U l  

That (5) is a special form of (3), combined with (4), can be verified by 
differentiation of the term within the square brackets. 

By exact solution of the differential energy equation, Lighthill showed 
that the constant in (5) is 6.41. His result was expressed in the equivalent 
integral form of (5), which, in the present notation, becomes 

(Note that (6*41)1!3 + (1/3)  ! 32/3, which is the form appearing in Lighthill’s 
paper. 1 

2.4. The Tribus-Klein-Tifford ‘ improvement ’ 
The Lighthill solution (5) or (6) is asymptotically exact, within the 

validity of the boundary-layer approximation, if A4 <a4. It may give 
appreciable error in other cases. Such cases occur among the isothermal 
wedge solutions, when cr $ 1 and the pressure gradient is finite. Noting 
this, Tribus & Klein (1955)) following Tifford (1951), have proposed a 
correction to Lighthill’s formula which depends on and the pressure 
gradient parameter alone. Their correction is such as to make the formula 
exact for all the isothermal wedges. 

Suppose 
that the heated section on a wedge does not start at the apex but much 
farther back. Then  the thermal boundary layer is comparatively thin, 
the Lighthill expression (6) is accurate, and no correction is needed. 
Application of the Tribus-Klein-Tifford correction will therefore introduce 
an error of the same magnitude as that which it is intended to eliminate. 

It is clear that if the Lighthill formula is to be improved, the correction 
procedure must take account of the relative thicknesses of the boundary 
layers. Yet how is such a correction to be derived from the isothermal 

This  procedure, however, is open to  the following objections. 
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wedge solutions if these have a thickness ratio uniquely determined by 
Prandtl number and pressure gradient parameter ?-only by re-grouping 
the isothermal wedge solutions in the light of intuition. 

2.5. The new correction 
Suppose that the correction required, to account for the influence of 

A4/S4, (S:/v) duJdx, and u, is a function solely of the extent of the thermal 
boundary layer into the region where the velocity profile in the boundary 
layer is curved. The latter quantity is measured by the dimensionless 
group (A, a,/.) du,/dx; for the velocity distribution close to the wall can 
be written 

and at y = A, the ratio of the quadratic to the linear term is 

(x zA4)/( 8, ) -u1 dU1 2 &d = A484 &l 

2v dx * 

If the above supposition is correct, it ought to be possible to write the 
continuation equation (3) with high accuracy in the form 

in which the form of the left-hand side and the constant on the right-hand 
side derive from the Lighthill solution, and F is the as yet unknown 
correction term. This function may be expected to vanish with its argument. 

The validity of equation (9) can be tested by reference to  the isothermal 
wedge solutions ; for if (A, S,/v) dul/dx is as important as has been supposed, 
these solutions plotted in the form suggested by (9) should form a single 
curve instead of a one-parameter family of curves. 

This is put to the test in figure 2 on which the isothermal wedge data 
of Eckert (1942) and of Livingood & Donoughe (1955) are plotted. It will 
be seen that the points indeed lie close to a single curve ; the supposition is 
apparently well-founded. 

Some scatter is apparent however. The worst is in the neighbourhood 
of (A,8,/v)dul/dx = 0, the case of zero pressure gradient. Here the 
isothermal wedge point for (T = 0.7 lies at an ordinate of 6.9 instead of the 
expected 6.41. Since the heat transfer rate is proportional to the reciprocal 
cube root of the ordinate, the error in heat flux is only 2.574, which may be 
considered acceptable. This is of course the same error as was noted by 
Lighthill for the case of the flat plate. 

Use of equation (9) can therefore be expected to yield errors in heat 
flux of less than 2.5?,, particularly when the heated section starts well 
back from the leading edge. 
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2.6. Free conelection and the rotating disc 
Also plotted on figure 2 are points obtained from solutions valid for 

free convection from a flat plate and for forced convection from a rotating 
disc. The former data have been derived from the papers of Schmidt & 
Beckmann (1930), Schuh (1948), Ostrach (1953), and Stewartson & Jones 
(1957). The latter data have been obtained by interpolation in small-scale 
graphs presented by Millsaps & fohlhausen (1952) ; their accuracy is 
therefore poor. For both free convection and the rotating disc, the curvature 

r 

"4% b r  

Y b r  

0 / '  
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Figure 2. Deduction of the continuation function from the isothermal wedge 
solutions : conduction thickness A4. 

parameter in the abscissa of figure 2 is - A, (Pu/ay2) ,  = , / ( au /ay ) ,  = ", 
instead of the group (A,S,/v)duJdx which is equivalent for the wedge 
solutions only. In evaluating the rotating-disc solutions, Mangler's (1948) 
transformation from rotationally-symmetric to plane coordinates was used. 

'The free-convection and rotating-disc points lie close to a prolongation 
of the curve for the forced-convection points. Their nearness is further 
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confirmation of the validity of the curvature parameter. The  fact that this 
has high positive values for these cases, even with very high Prandtl number, 
is a reflection of the fact that the boundary layers are highly accelerated, in 
the one case by buoyancy forces, in the other by centrifugal forces. 

Figure 2 summarizes almost all the heat transfer solutions available in 
the literature for constant-property boundary-layer flow past an impermeable 
wall. It is evident that more solutions are needed before the field can be 
regarded as adequately covered. Nevertheless, the coordinates used in 
plotting figure 2, by bringing the points near to a single curve, greatly 
diminish the amount of further work which is needed. They may be expected 
to prove helpful also in presenting data for variable properties with a 
permeable wall. 

2.7. Integration 
Many numerical methods are available for integrating equations such 

as (9), in which it will be recalled that A4 is the dependent variable, x is the 
independent one, and u1, du,/dx, and 6, are known functions of x. However, 
since F in (9) is normally small, the following quadrature (essentially a 
Picard approximation) will often suffice. The  solution of ( 5 )  is written as 

[A;(z)3'2]J -[A;(z)3'2] = 6 . 4 1 ~  
5 

+ E 1; (?)I" .(A; 2) dx, (10) 

the subscripts to the brackets denoting the position at which they arc 
evaluated. 

Written explicitly for the required quantity A,(x), (10) becomes (for 
the case when A4 = 0 at x = c, as is usual) 

In (10) and ( l l ) ,  A& appearing in the argument of F is the first approxi- 
mation for A4, obtained from (1 1) by omitting the second integral. Values 
of F may be read from the curve drawn in figure 2. If in a particular case 
the second integral appears to be important, a second approximation can 
obviously be made. 

2.8. ExampEe 
A calculation of the distribution of heat flux from an ellipse, of axis 

ratio 1 : 2 and uniform temperature (the case that was first studied by 
Eckert (1942)) has been made by the above method. The  result, in non- 
dimensional form, is represented in figure 3, where it may be compared 
with the calculation by Eckert's class I procedure. The  present results 
lie somewhat below those of Eckert, but it should not be supposed that they 
are therefore less accurate ; for class I procedures involve graver approxi- 
mations than the present class 11 method. No experimental results of 
swfficient accuracy are available for comparison. 
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I t  should be notcd that in thc example, in which the heated section 
starts at a stagnation point, the integration has to be begun by a straight- 
forward application of L’Hopital’s rule. 

01 0 2  0.3 0 4  0 5  06 0 

I (c = CHORD LENGTH.) 

Figure 3. Calculated local heat flux distribution on ellipse of axis ratio 1 : 2. 

3. DETERMINATION OF TOTAL HEAT TRANSFER RATE BY USE OF THE 

When the local heat transfer has been determined by the method of 
the last section, the total heat transfer rate can be found by integration, 
If only the total heat transfer is required, a quicker method is to evaluate 
u1A2 directly and apply equation (2). A continuation equation for A2 
can be set up  by a combined use of dimensional analysis, intuition, and the 
exact similar solutions, as before. The  solution for the case treated by 
Lighthill may be written 

ENTHALPY-FLUX THICKNESS A, 

The appropriate ‘ curvature parameter ’ is ( A ~ ’ 2 S ~ / 2 / v )  du,/dx. The wedge 
solutions for various Prandtl numbers have been plotted in the corresponding 
form in figure 4, which confirms expectations by yielding a grouping of 
the points close to a single curve. Fortuitously, this curve is very nearly 
a straight line, so that an approximate linear expression can be found. The  
continuation equation thus becomes 

Comparison of (12) and (13)  for the case du,/dx = 0 shows the order 
of magnitude of the maximum error involved in the linear approximation, 
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and indeed in the method as a whole : about 2*.5(% in the solution for heat 

Equation (13) can be integrated as a quadrature with a Picard approxi- 
now. 

mation as before. The  required form is 

wherein A; is the first approximation for A,, obtained from (14) by omitting 
the second integral. The  curve on figure 4 is so nearly horizontal that a 
second approximation will rarely be worth while. 

-1.2 -1.0 -08 -4.6 -0.4 -0.2 
I 

Figure 4. Deduction of the continuation function from the isothermal wedge 
solutions : enthalpy-flux thickness A,. 

4. HEAT TRANSFER FROM A SURFACE OF VARYING TEMPERATURE 

If the wall temperature TO varies with 5 in a known way, the local heat 
transfer at a point x is determined by superposition in the manner already 
indicated by Lighthill. The  effects on 
the heat transfer at x of each increment of wall temperature dT,, at f are 
added by the (Stieltjes) integral 

A brief summary is given here. 

where A,((,%) for each f and the appropriate x is obtained from (7). T o  
evaluate (15). x is regarded as fixed in the integration and dTn(f)  is written 
as (dT, /&)@, except a t  f = 0 and at discontinuous jumps of wall 
temperature. The  wall temperature gradient dT,,/df is supposed given. 

The  total heat flow from the aerofoil is evaluated in a similar way from 
the integral 
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5. DETERMINATION OF u1/6, AS A FUNCTION OF x 

31 

Finally the distribution of uJS,, which has been assumed known, will 
be discussed. Tribus & Klein (1955) advocate solving a continuation 
equation for the momentum thickness numerically by the isocline method. 
Simpler methods exist, however : for example, the approximate quadratures 
introduced by Walz (1941), Thwaites (1949), and others. A more exact 
technique similar to that used above for heat transfer will be mentioned 
here. 

Dimensional analysis and the boundary-layer assumption yield a 
continuation equation for the momentum thickness 6, in which the unknown 
function can be obtained from the wedge solutions. A convenient form 
of the equation is found to be 

8: du, 

v dx 
-0'0682 -0.0266 0 _ -  

f(; 2) -0.026 -0'0058 0 

(S4/sz)' co 36.9 20.5 

- 

(~51.~~8;) = 0.4418-f 
1 d  

vuf17 dx 
-- 

0.0333 0.0611 

0.0033 0.0019 

12.75 9.50 

for then the second-term on the right-hand side is very small. Table 2 
contains a few values, computed from Hartree's solution for the wedge 
boundary layers (Hartreeil937). 

8: du, 

v dx 
-0'0682 -0.0266 0 _ -  

f(; 2) -0.026 -0'0058 0 

(S4/sz)' co 36.9 20.5 

- 

0.0333 0.0611 

0.0033 0.0019 

12.75 9.50 

Equation (17) can be integrated in the manner used for equation (9) 
and (13 ) ,  a first approximation for 6: being used in the argument of f .  
A second approximation will hardly ever be worth while. 

Once S2, the momentum thickness, has been calculated as a function of x, 
the hypothesis that only members of the wedge family of velocity profiles 
occur is invoked for the calculation of corresponding values of the shear 
thickness 6,. For 6,/S2 is known for wedges ; it is a unique function of the 
pressure gradient parameter, G~(du,/dx)/v. Table 2 gives some values based 
on the work of Hartree. Consultation of a more extended table of 
this nature gives 6, as a function of x, and so enables the heat transfer 
calculation to proceed. 

6. CONCLUSIONS 
1. The Lighthill method of calculating heat transfer in laminar flow has 

(a)  a better allowance than that of Tifford for the non-linearity of the 
velocity profile ; 

been improved by 
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( 0 )  tlie usc of the enthalpy-flux thickness fur calculating the heat 
transfer over a finite area of the surface ; and 

( c )  a quadrature procedure for integrating the continuation equation 
for the boundary layer thicknesses. 

2. The  effects of pressure gradient and Prandtl number on the rate of 
growth of the thermal boundary layer can be described by a single ' curvature 
parameter ' which expresses the extent of the temperature boundary layer 
into the region where the velocity profile curvature is noticeable. 

3. The conclusion 2 is supported by examination of the wedge solutions 
of Eckert and others. 

The  author is grateful to M r  D. J. Woodford for working out the ellipse 
example, and to M r  A. G. Smith for many discussions on heat transfer 
through boundary layers. 

REFERENCES 
ECKERT, E. R. G. 1942 V.D.I. Forschungsheft 416. 
HARTREE, D. R. 1937 Proc. Camb. Phil. SOC.  33, 223. 
LIGHTHILL, M. J. 1950 Proc. Roy .  SOC. A, 202, 359. 
LJVINGOOD, J. N. B., & DONOIJGHE, P. L. 1955 Nut. A d a .  Comm. Aero.,  Wush., 

MANGLER, W. 1948 2. anqezc. AWath. Mech. 28, 97. 
MILLSAPS, K. & POHLHAUSEN, K. 1952 J. Aevo. Sci.  19, 120. 
OSTRACH, S. 1953 Nnt .  A d z .  Comm. Aero.,  Wash.,  Rep .  no. 1111. 
SCHMIDT, E., & DECKMANN, W. 1930 Tech. Mech. 11. Thermodynamik ( F m s c h g .  

Ing.-Wes.) 1, 391. 
SCHIJII, H. 1948 Boundary layers of temperature. Ministry of Sirpply Cermaii 

Dociiment Centre, no. 3220T. 
ScnuH, H. 1953 K. T. H., Stockholm, Aero T .  A'., 33. 
SMITH, A. G., & SPALDING, D. B. 1958 J .  Roy .  Aero. SOC. 62, 60. 
Sr'ALDIN(:, D. B. & SMITH, A. G. 1958 Verbrennung flussiger und fester Brennstoffe, 

ein Grenzschichtproblem. (To be published in Brennstoff- Wiirme-Kraft .)  
SQUIRE, H. B. 1942 Aero. Res. Counc., Loi7d., Rep. &3 .?fern., no. 1986. 
STEWARTSON, K. & JONES, L. T. 1957 J. Aero. Sc i .  24,379. 
TIFFORD, A. hi. 1951 J. A!ero. Sca. 18, 283. 
THWAITES, B. 1949 Aero. Quart. 1, 245. 
TRIBUS, M., & KLEIN, J. 1955 J .  Aeio .  Sci.  22,62. 
WALZ, A. 1941, Lilienthnl Bericht 141, 8. 

Tech. Note no. 3588. 


